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ABSTRACT

This study presents an innovative approach to understanding the speed of light through the integration
of Maxwell’s light speed equation with the elementary wave equation, using unit analysis. By
employing a separation of variables, we align the resulting form with the traditional expression
derived from Maxwell’s equations. Further analysis of permittivity and permeability units not only
supports this alignment but also leads to a novel representation of these constants, positioning the
speed of light within a new theoretical framework. This approach allows us to propose modifications
to the conventional understanding of electromagnetic theory and suggests an alternative derivation
of the mass-energy equivalence, traditionally approached through relativity. This paper invites a
reexamination of fundamental principles and opens new avenues for theoretical and applied physics.
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1 Introduction

In the realm of theoretical physics, Maxwell’s equations stand as foundational pillars, elegantly encapsulating the
interactions between electric fields, magnetic fields, and their propagation through space. Historically celebrated for
its simplicity and profound implications, the equation describing the speed of light in terms of the permeability and
permittivity of free space is often viewed as a derivative result within Maxwell’s broader electromagnetic framework.

This relationship is elegantly captured by the equation:

c2 =
1

µ0ϵ0

where c represents the speed of light in vacuum, µ0 the magnetic permeability, and ϵ0 the electric permittivity of free
space.

This paper proposes a novel reinterpretation of this well-established equation by embedding it within the framework of
the elementary wave equation, achieved through unit analysis and separation of variables approach. Our objective is not
merely to reinterpret the constants involved but to elevate the speed of light equation to a central, unifying theorem in
physics. This approach maintains the integrity of Maxwell’s original formulations while suggesting a more pivotal role
for this equation in the theoretical landscape.

By dissecting and reconstructing the equation’s components, our study uncovers new depths of analytical insight,
offering fresh insights into not just how light behaves, but potentially how energy, mass, and fundamental forces are
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interrelated. This expanded interpretation suggests that the foundational equation for the speed of light might serve as
the linchpin in a more comprehensive framework of physical theory, unifying various aspects of physics.

While the implications of this research are profound, positing a shift in our conceptual foundations from viewing this
equation as an interesting corollary to recognizing it as a central, perhaps even fundamental theorem, we approach our
claims with cautious optimism. Grounded in rigorous mathematical analysis, our findings invite further empirical
validation and theoretical debate. This paper sets the stage for a broader reexamination of established physical laws and
opens new avenues for theoretical and applied physics.

2 Methodology

This section outlines the mathematical techniques employed in our analysis, with a focus on the separation of variables
method applied to the elementary wave equation.

2.1 Separation of Variables in the Elementary Wave Equation

The elementary wave equation in one dimension is a fundamental equation in physics that describes how waves
propagate through various mediums. It is typically expressed as:

∂2u

∂t2
= c2

∂2u

∂x2
, (1)

where u(x, t) represents the wave function, c is the wave speed, x is the spatial coordinate, and t is time.

To simplify this partial differential equation, we employ the separation of variables technique. We assume the solution
can be represented as the product of two functions, each depending on one of the variables alone:

u(x, t) = X(x) · T (t). (2)

Substituting this assumed form into the wave equation and rearranging gives:

X(x)
∂2T (t)

∂t2
= c2T (t)

∂2X(x)

∂x2
. (3)

By dividing both sides of this equation by X(x)T (t) (assuming X and T are non-zero), we obtain:

1

T (t)

∂2T (t)

∂t2
= c2

1

X(x)

∂2X(x)

∂x2
= −λ, (4)

where λ is a separation constant.

This separation results in two ordinary differential equations:

∂2T

∂t2
+ λT = 0, (5)

∂2X

∂x2
+

λ

c2
X = 0. (6)

These equations are solved independently, leading to solutions that often involve trigonometric functions or exponentials,
depending on the boundary conditions and the value of λ.

2.2 Implications of the Solution

The solutions obtained through this method provide the basis for our subsequent analyses in integrating Maxwell’s
speed of light equation with the wave equation. By understanding the independent solutions for X(x) and T (t), we can
explore more complex physical phenomena and derive new interpretations of classical physics laws.

This approach not only simplifies the mathematical handling of the wave equation but also offers a clear pathway to
extend our theoretical framework to include Maxwell’s relations and explore their implications in a unified context.
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3 Elementary Wave Equation: A Separation of Variables Approach

Building upon the methodology outlined in the previous section, we now apply the separation of variables technique to
the elementary wave equation. This approach simplifies the analysis and provides a framework for understanding wave
propagation under various conditions. We begin by considering the standard form of the elementary wave equation:

Utt = c2 · Uxx (7)

Assuming the solution can be separated into spatial and temporal components, we express U(x, t) as:

U(x, t) = v(x) · w(t) (8a)

Substituting this form into the wave equation and separating the variables, we obtain the following relationships:

Utt = v(x) · w′′(t) (8b)
Uxx = v′′(x) · w(t) (8c)

v(x) · w′′(t) = c2 · v′′(x) · w(t) (8d)
w′′(t)

w(t)
= c2 · v

′′(x)

v(x)
= λ (8e)

Each side of Equation 8d must independently equal λ because the left side depends solely on t and the right side solely
on x. This indicates a harmonious separation of variables, resulting in two simpler ordinary differential equations for
v(x) and w(t), which can be solved to find the general solutions for the wave function U(x, t).

4 Maxwell’s Framework: Speed of Light through Permeability and Permittivity

We now turn our attention to one of the cornerstone relationships in electromagnetism as formulated by James Clerk
Maxwell. Maxwell’s equations describe how electric and magnetic fields are generated by charges, currents, and
changes of the fields themselves. One of the most profound implications derived from these equations is the speed
of light in vacuum, a fundamental constant of nature, which can be expressed through the relationship between the
permeability and permittivity of free space.

Maxwell’s equation relating these quantities is:

µ0 · ϵ0 =
1

c2
(9)

where µ0 represents the permeability of free space, ϵ0 the permittivity of free space, and c2 the square of the speed of
light. This relationship not only underscores the link between electromagnetic theory and the theory of relativity but
also provides a fundamental insight into the nature of electromagnetic waves in vacuum.

By exploring this relationship, we can deepen our understanding of how these constants contribute to the propagation of
light and other electromagnetic waves, paving the way for a discussion on how these concepts integrate with the wave
equation analysis provided in the previous sections.

5 Rethinking Energy-Mass Equivalence: A Non-relativistic Approach

Here we lay the framework necessary to a novel derivation of Einstein’s energy-mass equivalence formula, E = mc2,
using a non-relativistic approach based on the elementary wave equation and Maxwell’s framework. Traditionally,
this relationship is derived from the principles of special relativity, representing a cornerstone in modern physics that
describes the interchangeability of mass and energy.

In subsequent sections, we will explore an alternative derivation to the formula:

E = m · c2 (10)

where E represents energy, m is mass, and c2 denotes the square of the speed of light. Unlike the conventional
relativistic approach, our derivation stems from classical physics principles integrated with the wave behavior as
described by the elementary wave equation and influenced by the electromagnetic constants discussed in the previous
sections.
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Our reinterpretation not only challenges traditional views but also proposes a foundational understanding that could
have implications across various domains of physics. In subsequent sections, we will demonstrate how the reinterpreted
formula applies specifically to the dynamics of a single photon, showing that it serves as a particular solution within
our broader theoretical framework. This approach may provide new insights into the behavior of energy and mass at
fundamental levels.

6 Balancing Light: Revising c² in the Elementary Wave Equation

In traditional physics, the speed of light squared, c2, is a constant used to bridge concepts of space and time with
energy and mass, as seen in Einstein’s energy-mass equivalence E = mc2. This section explores a novel approach by
deconstructing c2 into its components to gain further insights into wave dynamics under varying conditions.

We begin by considering the decomposition of the speed of light:

c2 = c · c (11)

where c represents the conventional speed of light. For more detailed analysis, we express this as:

c2 = ct · cx (12)

with ct representing the time-varied speed and cx the position-varied speed, allowing for a dynamic perspective of wave
propagation.

Applying this to the elementary wave equation, we reformulate the relationship:

1

ct
· w

′′(t)

w(t)
=

cx
1

· v
′′(x)

v(x)
(13)

This equation highlights how variations in speed across different domains can affect wave behavior.

To incorporate mass, which typically cancels out in conventional analyses but may provide additional insights, we
consider it in a dimensional form:

mt

ct
· w

′′(t)

w(t)
=

cx
mx

· v
′′(x)

v(x)
(14)

Here, mt and mx represent time-varied and position-varied mass, respectively. This inclusion allows us to explore
how mass and speed variations could interact within the wave equation framework, potentially revealing new physical
interpretations.

This approach not only questions traditional constants and their roles but also proposes a framework where constants like
the speed of light and mass are seen as variable under different conditions. This could lead to significant advancements
in understanding the fundamental principles governing wave phenomena and energy interactions.

7 Unit Analysis of Permeability and Permittivity

Further, this section elaborates on the unit analysis of the permeability and permittivity of free space, fundamental
constants in electromagnetism. By decomposing these units into their fundamental counterparts, we gain insights into
the underlying relationships and dimensions that govern electromagnetic phenomena. This analysis not only reinforces
our understanding of these constants but also explores their implications in the broader context of Maxwell’s equations
and the propagation of electromagnetic waves.

7.1 The Permeability of Free Space, µ0

Permeability (µ0) characterizes how a magnetic field penetrates a medium and is a key component in the description of
magnetic phenomena. We start by examining the unit of inductance, which is directly related to permeability:

L = 1 H =
V · s
A

(15)

where L is inductance in Henries (H), V is voltage, s is seconds, and A is amperes. Current or amperes can be further
defined as:

1 A =
∆I

∆t
(16)
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where ∆I represents a change in current over time ∆t. Thus, permeability in terms of its dimensional analysis can be
represented as:

µ0 =
H

m
(17)

Expanding the units of Henries, we derive:

µ0 =
V · s ·∆t

∆I ·m
(18)

Relating it to acceleration, where acceleration is defined as:

a =
m

s2
=

m

s ·∆t
(19)

We reformulate permeability as:

µ0 =
V

∆I
· [a]−1 (20)

7.2 The Permittivity of Free Space, ϵ0

Permittivity (ϵ0) measures a material’s ability to store electrical energy in an electric field and is crucial for understanding
the behavior of capacitors and electric fields in vacuum. Starting from the basic units of capacitance:

F =
Q

V
(21)

where F is capacitance in Farads, Q is electric charge, and V is voltage. The permittivity of free space is then:

ϵ0 =
F

m
=

Q

V ·m
=

Q

V
· [m]−1 (22)

This analysis highlights how breaking down these constants into their fundamental units provides a deeper understanding
of their role and significance in the electromagnetic theory, setting the stage for further exploration of their impact on
wave propagation and energy relationships in subsequent sections.

8 Integrating Maxwell’s Relations with Wave Equation Solutions

This section builds upon our earlier discussions on the permeability and permittivity of free space by integrating these
concepts with the elementary wave equation. Maxwell’s relations provide a critical bridge between electromagnetic
theory and classical wave dynamics. Here, we reexamine these relations under the new light shed by our novel unit
analysis, aiming to uncover deeper insights into wave propagation mechanisms.

Recall the previously introduced Maxwell relation:

µ0 · ϵ0 =
1

c2
(23)

which ties the permeability and permittivity of free space to the speed of light. We now express the speed of light in
variable terms:

ct · ϵ0 =
1

µ0 · cx
(24)

where ct and cx represent the time-varied and position-varied components of speed, respectively.

To integrate these concepts with our earlier findings, we substitute equations derived from our unit analysis:

ct ·
Q

V
· [m]−1 =

1

cx
· ∆I

V
· [a]−1 (25)

This equation allows us to rewrite the relationship as:

ct
V

· [a]

[m]
=

1

ct · V
· ∆I

Q
(26)

We interpret [a]
[m] as the ratio of acceleration to distance, relating to the second derivative of position with respect to time:

[a]

[m]
=

s′′(t)

s(t)
=

w′′(t)

w(t)
(27)
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Where s′′(t)
s(t) is the traditional kinematic notation for the division of acceleration by position.

Similarly, ∆I
Q represents the second derivative of charge to charge, which correlates to the spatial dynamics of our wave

equation:
∆I

Q
=

Q′′(x)

Q(x)
=

v′′(x)

v(x)
(28)

Finally, we demonstrate the full integration:

ct
1
· s

′′(t)

s(t)
=

1

cx
· Q

′′(x)

Q(x)
(29)

This equation echoes the form of our derived Equation [14], illustrating how these modified relations can potentially
provide fresh perspectives and deeper understanding of wave mechanics.

9 Photon Dynamics: A Particular Solution Using the Unified Equation

This section explores the dynamics of a single photon, which travels at the speed of light and possesses minimal
measurable mass. By applying our earlier results from the unified wave and Maxwell’s equations, we derive a particular
solution that can provide additional insights into photon behavior and energy-mass relationship.

We begin by recalling the generalized wave equation reformulated in terms of variable speed components and mass:

v(x) · w′′(t) = c2 · v′′(x) · w(t), (5)

mt

ct
· w

′′(t)

w(t)
=

cx
mx

· v
′′(x)

v(x)
, (12)

where mt and mx are conceptual representations of time-varied and position-varied mass, respectively.

Considering the mass of a photon as the smallest measurable unit, we set mt ·mx = 1. This assumption simplifies our
analysis and allows us to express the dynamics as follows:

mx ·mt ·Q(x) · s′′(t) = ct · cx · s(t) ·Q′′(x) (30)

1 ·Q(x) · s′′(t) = c2 · s(t) ·Q′′(x) (31)
From this, we deduce the proportionality of charge distribution to acceleration and deceleration in spatial and temporal
terms:

Q(x)

Q′′(x)
· s

′′(t)

s(t)
= 1 · c2 (32)

This equation mirrors the energy-mass equivalence as formulated by Einstein, but derived here within the context of
classical physics:

E =
Q(x)

Q′′(x)
· s

′′(t)

s(t)
= 1 · c2 (33)

Here, the traditionally relativistic concept of energy-mass equivalence is approached through classical means, suggesting
that the equivalence of mass and energy, typically applied in nuclear physics, may have broader applications.

We further refine this to express the energy of a photon:

Ephoton =
c2

m
(34)

which, when used to calculate the energy of an atom by applying Einstein’s principle, simply becomes a conversion
factor to convert between the mass minimized photon domain and the speed minimized atomic domain:

Eatom =
matom

v2atom
· Ephoton =

matom

v2atom
· c2

mphoton
(35)

Assuming the atom is at rest, where the speed is minimal compared to that of the speed of light (v2atom = 1):

Eatom = matom · c2 (36)

This derivation not only reaffirms the validity of Einstein’s energy-mass equivalence within our theoretical framework
but also illustrates its practical application in determining photon and atomic energies, bridging classical and relativistic
physics.
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10 Discussion

This study presents a series of new interpretations and modifications to the classical wave equation, Maxwell’s
electromagnetic theory, and the energy-mass equivalence as originally formulated by Einstein. Our findings suggest
that these fundamental equations can be integrated in a way that provides novel insights into the behavior of waves and
particles at the quantum and classical levels.

10.1 Comparison with Existing Theories

Our approach revisits the well-trodden paths of Maxwell and Einstein with a fresh perspective, particularly challenging
the conventional view of constants such as the speed of light and permittivity of free space. Unlike traditional models
that treat these constants as fixed, our analysis suggests that they can vary under certain theoretical conditions, potentially
leading to new ways of understanding electromagnetic wave propagation and photon dynamics.

10.2 Theoretical and Practical Implications

The implications of our research extend beyond theoretical revisions; they offer practical applications that could
transform our approach to optical technologies. One significant demonstration of our framework’s validity is reflected
in the Faraday Effect, an experiment where light traveling through a medium under the influence of a magnetic field
exhibits changes in direction and polarization. This phenomenon provides compelling evidence that the speed of light
can indeed vary in response to external magnetic fields, contradicting the conventional view of its invariance.

Our study suggests that such variability is not merely an anomaly but a fundamental aspect of wave mechanics that
can be predicted and quantified through our modified relations. This insight has profound implications for developing
new optical materials and technologies, where controlling light’s behavior with magnetic fields can be harnessed more
effectively. The ability to manipulate light’s properties in this way could lead to advancements in telecommunications,
quantum computing, and other fields relying on precise control of light.

10.3 Limitations of the Study

While our theoretical framework offers exciting possibilities, it is grounded in a set of assumptions that may not hold
in all physical contexts. The application of classical mechanics to explain quantum phenomena, although innovative,
requires further empirical support. Additionally, the treatment of photon mass as a conceptual tool, rather than an
empirical fact, may raise questions about the applicability of these models to different scales of physical interaction.

10.4 Future Research Directions

Future studies could explore the empirical validation of our theoretical predictions, particularly through experiments
designed to measure variations in the speed of light under controlled conditions. Further theoretical work is also
needed to refine the models presented here, exploring the limits and capabilities of these new interpretations in both
macroscopic and microscopic systems.

In conclusion, this research marks only the beginning of what could be a fundamental shift in our understanding of the
universe’s basic forces. It challenges established norms and provides a foundation for future explorations that could
redefine what we know about energy, mass, and light.

11 Conclusion

This research revisits foundational principles of physics, offering new interpretations of Maxwell’s equations, the
elementary wave equation, and Einstein’s energy-mass equivalence. By integrating these classical theories through a
novel mathematical framework, we have demonstrated potential variability in constants traditionally considered fixed
and explored their implications under different theoretical conditions.

Our findings challenge established paradigms and suggest that the speed of light and other fundamental constants may
exhibit variability that has been overlooked. This revelation opens up exciting possibilities for rethinking the laws that
govern electromagnetic wave propagation and the interrelation of energy and mass.

The implications of this work extend beyond the theoretical, proposing new avenues for experimental physics and
potential applications in technologies like quantum computing and photonics. By demonstrating that fundamental
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constants might not be as constant as previously believed, this study lays the groundwork for future explorations into
the very fabric of physical reality.

Looking forward, this research invites physicists and scholars to question and test the limits of what is known. It
encourages a reevaluation of the constants that form the backbone of our understanding of the universe and suggests
that much is still to be discovered about the fundamental forces that shape our world.

In conclusion, while our study opens new theoretical doors, it also underscores the necessity for innovative experimental
work to validate and build upon these ideas, ensuring that the march towards understanding the universe continues with
renewed vigor and curiosity.
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